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Lyapunov-Based Control for Switched Power Converters *

Seth R. Sanders George C. Verghese
Department of Electrical Engineering Laboratory for Electromagnetic

and Computer Sciences and Electronic Systems
University of California, Berkeley Massachusetts Institute of Technology

Abstract [121 and [141 also consider control design using Lyapunov fuc-
tions.

Beginning with fundamental properties such as passivity or The paper is organized as follows. Section 2 develops fun-
incremental p&%sivity of the network elements comprising a damental stability properties for a broad class of switching

switched power converter, the nominal open-loop operation converters. In particular, we derive the form of a Lyapuuov
function that illustrates that each member of this class is

of a broad class of such converters is shown to be stable in open-loop stable. In Section 3, the Lyapunov.based control
the large via a Lyapunov argument. The obtained Lyapunov approach is introduced. This section includes a simple ex-
function is then shown to be useful for designing globally ample to demonstrate the method, an outline of the general
stabilizing controls that include adaptive schemes for han- approach, and an illustration of how an adaptation scheme
dling uncertain nominal parameters. Numerical simulations can be incorporated to handle uncertaiuties in the nouinal
illustrate the application of this control approach in DC-DC operating point.
converters. ,.

2 Open-Loop Stability of Switch-
1 Introduction ing Converters

Most control schemes for power electronic circuits in present In this section, switching convertei systems (understood to
use are obtained by linearizing a nonlinear model about a include source and load) that consist of an interconnection
nominal operating point or trajectory. Large signal transients inclde source dl sithat incrementeryoane re-thatoccr a poer u oroveloa reover ar hadle inof ideal DC sources, ideal switches, incrementally passive re-
that occur at power p or overload recovery are handled 31 sistors, and passive linear reactive elements are considered.
an ad hoc manaer. Designers analyze each circuit individ. Multiport circuit elements are included in the development
ually to prescribe a scheme to accomodate a designated set here. This class of switching converters is shown to be stable
of large signal transients. This paper addresses the issue of by exhibiting a Lyapnov function that corresponds to the
how one might do better. In particular, the paper develops energy hitin crement with respect to an arbitrarl, omtinal
a methodology for designing control laws for fast-switching state trajectory. The argument is extended to include on-
converters that result in globally stable behavior, robustness linear reactive elements that are strictly relatively passive in
against parametric uncertainty, and satisfactory transient re- the case where the switching frequency becotues infinite, and
sponse. The main approach in this paper is based on the use stability with respect to an equilibrium point is considered.
of Lyapunov functions- Essential background on network theoretic issues for the de-

There has been considerable previous work along these velopment in this section is contained in Appendix A. (Also.
lines. The paper of Erickson et al. [111 develops a large-signal see (16, 17, 181.)
averaged model for switched converters and points out the
hazards of control designs based upon small-signal, linearized
models. The previous work on large signal control schemes
can be divided roughly into two groups. One is based on 2.1 Switching Converter Stability Under
called "switching-law" controls where the position of a con- Finite Switching Frequency
trolled switch is directly commanded as a function of the in-
stantaneous values of the circuit variables. Examples of these Let the switching converter be composed of ideal DC sources,
are the sliding mode control schemes of [1, 2, 3, 4, 5, 6, 7, 211 ideal switches, incrementally passive resistors, and linear pas-
(which include current-mode control) and the bang-bang con- sive reactive elements. A diode may be considered as either
trol schemes of [9, 10, 151. The second approach relies on the an ideal switch or as an incrementally pa.sive resistor. We Q
state-space averaged model for the converter of interest. Rep- suppose the switches are operated in accord with a given ar- C
resentative schemes are those in [12, 13, 14, 22). References bitrary switching pattern and suppose that we are given a

nominal solution corresponding to the given switching pat-

*The first author has been partially supported by an IBM fellowship, tern.
The weond author has been supported by the MIT/Industry Power For each branch of the network, denote the nominal tra-
Electronics Collegiumn and by the Air Force Office o(Scientiflc Research jectory by (i(t), (t)j, and form the (not necessarily small)
under Grant AFOSR-8&0032 increments with respect to the nominal trajectory for each

les
124

A-1



network branch, i.e. source cutsets. (In this case, we would require that all reis.-
tots be strictly incrementally passive.)

6i(t) = i(t) - 1(t) A special case of the aboe result is when the switches ae

6v(t) = v(t) - 0(t) (1) operated with a periodic switching pattern, and there exists a
nominal periodic steady state solution. In this case, the result

By applying Tellegen's theorem to the increments in all the states that the given periodic steady state trajectory is stable
network branches when the circuit is in any one of its topolo- in the large. This result is of particular interest for the case
gies, we obtain of a DC-DC converter operating with constant switching fre-

quency. Note that this result holds up for DC-DC converters
0 = y 6i 6v + X 6i 6v -+- 6i 6v + operating in the discontinms conduction mode. This can be

DC..e Switches A". seen by redrawing the schematic for the DC-DC converter of
6i 6v + E 6i 6v (2) interest with an ideal SPDT switch and incrementally passive

dl. Cap- resistive device (i.e. diode) replacing each transistor-diode
pair. For example, we would redraw the up-down converter

The summation involving DC sources is always zero since of Figure 2 as shown in Figure 1. The circuit of Figure I sat-
the incremnt in either voltage or current of each term is isfies the conditions for its nominal periodic trajectory to be
necessarily zero. The terms involving switches also add zero stable in the large, and it makes no difference whether or not
contribution to the sum in (2) for the same reason. The third the nominal trajectory contains a portion where the inductor
suiniation on the right-hand side of (2) is always nonnegative current is identically zero.
since each term is individually positive or zero as a result
of the incremental passivity of the resistors. In fact, this
summation can be thought of as the dissipated power in the
increment with respect to the given nominal trajectory. The
remainiing two summations represent the time rate of change -
of the stored energy in the increment. Combining these facts, + k ,' In ralsteoT
we can write: V.(~ 1 ,

d V(6.r) = Fbibv+ E bibv= - Fibv (3) Ti
Ind. Cap. Res.

where Figure 1: Up-Down Converter Redrawn to Illustrate Stability
in Case of Discontinuous Conducion

V(6x) = J-(1/2)(6i)*L,(6i,) +
Ind.

CIap/2)(6v)'¢6(&). 2.2 Stability under Infinite Switching Fre-

(Note that the superscript * indicates transpose.) Because quency and Constant Duty Ratio

of the assumnption on passivity of the reactive elements, the The result given above can be extended to the case where
quantity V(6.r) which we shall from now on refer to by the the switching frequency becomes infinite. Infinite switching
suggestive name energy in the increment, is a positive definite frequency actually corresponds to the state-space averaged
quadratic function of the increnental state variables. Since model for a converter, and in this way an open-loop stability
equation (2) holds identically for any of the possible circuit result can be obtained for state-space averaged models. The
topologies, the energy in the increment is a Lyapunov func- main difference from the case of finite switching frequency is
tion for the dynamical system. In particular, we have that one needs to consider the stability of an equilibrium point

d for an averaged model of a DC-DC converter rather than a
fV(6z) E - 6v6i <0. (s) limit cycle. In such a set-up, it is possible to include nonlin-

eear reactive elements as well as nonlinear resistive elements.
This is of interest in power electronic circuits since nonlinear

In conclusion, the energy in the increment is a Lyapunov reactive elements do occur in practice. The following theorem
function for the given nominal trajectory, and we see that the summarizes the result for infinite switching frequency.
nominal trajetory is stable in the large. Since the nominal
trajectory selected above can be taken as any solution trajec-
tory, this statement implies that any two solution trajectories Theorem 2.1 Ssppose int a sitching converter is cn-a

do not diverge. srted from ideal sitches. ideal DC sources incrementally

Typically, asymptotic stability in the large can be con- passive resitor., reactive elements that are strictly relatively

cluded as well sime at least some parasitic loss is always saw- passive. and that its averaged model has an equilibrium point,

ciated with each energy storage element, i.e. series resistance then the equilibrium is stable in the large.

with inductors and parallel leakage resistance with capaci-
tors. An argument for asymptotic stability appears in [161 This theorem is easily proven by demonstrating the exis-
for circuits that have a DC equilibrium point, and consist of tence of an appropriate averaged circuit model. See 1231 for
only two-terninal elements. In [161, bossiness is guaranteed to more details. We shall rely heavily on this result in the sequel
be associated with each state variable by excluding inductor- where control laws based on state-space averaged models are
capacitor-voltage source loops and inductor-capacitor-current developed.
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3 Lyapunov-Based Control Design I. =2ams
v. = -gvolts

In this section, an approach to control of switching power i. = 3.2amps
convertes based on the use of Lyapunov functions will be
introduced. The main focus will be on control d-sign based The relevant matrices of the system are as follows:
on the state-space averaged model for a given switching con-
verter. The converters of interest are those that satisfy the [ O (1 -d.)/L
conditions guaranteeing that nominal state trajectories are A = -(I )/C 0
globally stable under open-loop operation, specifically con- 1
verters constructed from incrementally passive resistors, ideal B = 0 -11L
sources, ideal switches, and passive linear reactive elements. I/C 0
One particular choice of Lyapunov function for control de- b (V. - v.)/L
sig purposes that will be of interest is the energy in the i,,/C
increment. L 0

We shall begin by illustrating the Lyapumov-based control Q =0 C
method with an application to an up-down converter. Then,
we shall demonstrate how such a control design can be ob- The result on open-loop stability in Section 2 guarantees that
tained in a more general way. There is typically some freedom the energy in the increment is a Lyapunov function for open-
in the choice of Lyapunov function for the control design, but loop operation of this circuit. For the up-down converter, the
we shall exhibit some particular advantages of using the en- energy in the increment takes the form
ergy in the increment Finall, we shcw how a- !Iaptation
scheme can be incorporated to handle parametric uncertainty. I 1
Generalizations to converters containing nonlinear circuit el- V = -L(i - i.)3 + -C(t, - t,), (7)
ements. to converters that handle time-varying input-output 2 2

waveforms, and to converters operating in the discontinuous or 1
conduction mode are given in the thesis [231. A method (dual V X*QX. (8)
to the control design approach) for designing state observers 2
is also considered in [23]. Differentiating V along the system trajectories, we obtain

d ,~'=i'Q *~

3.1 Example: Up-Down Converter yv(z) = 2f(QA- AQ).+

i{t'(QB + B*Q)z + 2b'Qr)d. (9)

+ ~It turns out that QA + A'Q = 0 for this example, which
r verifies that the energy in the increment is a Lyapunov func-

V9Ition for open-loop operation (d = 0). In this example. it is
's also true that ('B + B*Q = 0. These relationships hold be-

I cause of the lossless nature of the example converter, i.e. the
lack of resistive elements in the converter. Considering these
relationships, (9) simplifies considerably to

Figure 2: Up-Down Converter dv(z) = (b*Q)d. (10)

Consider the up-down converter of Figure 2 which has a state- V(
space averaged model of the form MWny stabilizing control schemes can be obtained by in-

S= Az + (Bx + b)d, (6) LisV of (10). We shall consider the simple control law
d -n' z with a real and positive, modified to handle the

where the two-component state z consists of the deviation dut) a saturation constraint -d. !5 d !5 1 - d.. i.e.

of the inductor current from its nominal value (zi = i- i.)
and the deviation of the capacitor voltage from its nominal -a, -d. < d_ 1-4
(z2 = v - v,.). and where the input d is the deviation in -oy<-d (11)
the duty ratio from its nominal value (d = do - d.). (Note I - d., -cry > I - d.
that de indicates the total duty ratio here.) The parameter
values listed below were selected for operation at a switching where y = bQz. Here, the variable y takes the form
frequency of 50KHz.

C = 5.4F - (1, - t,)(i - i,) + i(v - t',). (12)
L = 0.18znHL = 00 H Note that the only dependence on circuit parameters is on the
R oo 0nominal values of the inductor current, the capacitor voltage,
d = 3/8 and the source voltage. This property is shared by analagous
V. = l5volts control schemes based on the energy in the increment for

3



many other switching converters, as will be discussed in Sub- of the linearized closed-loop system by choice of the gain a.
section 3.3. The dependence on nominal values of circuit A root locus of the closed.loop eigenvalues of the swan-signal
variables is of crucial importance, and this issue is addressed model is shown in Figure 3. To minimize the maximum of
in Subwectiou 3.4. There, a method for adaptively estimating the real parts of the eigenvalues, for example, the gain should
these values is developed, be selected so that the two eigenvalues coincide on the real

To investigate the dosed-loop behavior, we examine the axis at -20.05Krad/sec. An easy calculation indicates that
derivative of the Lyapunov function V(z) along the dosed- the value of the gain required to obtain this eigenvalue place-
loop sy-stem trajectories: ment is approximately a = .00785. In the remainder of the

d discussion of this example, a value of the gain of a = .008
v(r) will be used. The resulting closed-loop eigenvalues are at

about -16.Krad/sec and -24Krad/sec. Note that in this
-o 2 , -d < d I 1 - d example the dynamical behavior of the small signal closed-
-dy, -ay < -do (13) loop dynamics is limited by the natural resonant frequency

(1 - d,)y, -ay > 1 - d (I - d,)/ 'C of the open-loop state-space averaged system.
Since the bandwidth of the closed-loop dynamics is usually

In the saturated regions (the second and third lines of (13)), designed to be approximately an order of magnitude below
the time derivative of V(z) is strictly negative since either the switching frequency, and since this is also a typical res-
V' < --od or V' < -o(l - d)2. As a result, state trajecto. onant frequency of the open-loop dynamics for a reasonably
ries quickly enter the unsaturated region. In the unsaturated designed converter, the preceding limit on attainable closed-
region (the first line in (13)), V(z) is strictly decreasing if loop bandwidth is acceptable.
y 4 0. and asymptotic stability can be concluded by LaSalle's We expect the closed-loop system to be very well behaved,
theorem since y - 0 is not a system trajectory unless z =_ 0. and this is confirmed by the digital computer simulation
To see this, note that y =. 0 implies d _ 0 and the following: shown in Figure 4. In the following subsection, we present

b'QZ = 0 Via)

bQAx = 0, (14) .

with the last line in (14) obtained by noting that y' = 0. The 0.
existence of a nonzero solution z to (14) is equivalent to the
statement that the pair (bQ, A) is unobservable. However,
this pair is observable in this example, and therefore there 10 .
are no -ystem trajectories that do not converge to the origin.. 1! (US) IA (US)

In tfis example, we have not considered the effect of lossi. £
ness dne to parasitic and/or load resistances. The effect of d
such passive resistances would only enhance our stability re-
sult, by causing additional nonpositive terms of the form
-z'Rx (with R positive semi-definite) to be added to the 0.4
terms on the right-hand sides of (13).

0 . , t 0 , t
.... ___ _ _. - (as) t i (US)

0 Figure 4: Digital Simulation of Up-Down Converter under
Nonlinear Feedback Control Scheme

a~ e a derivation of a clans of control schemes to which the above
0 - example belongs.

3.2 A Basic Approach to Lyapunov-Based

-WM Control Design

In this subsection, we show how to derive a class of control
-M ............. ,30M -MMlaws for a switching converter model of the form (6), to which

the example (11) belongs. Note that the open-loop stability
of the system (6) is crucial for this approach, and hence we
shall restrict attention to switching converters that satisfy the

Figure 3: Root-Locus for Linearized Closed-Loop Control conditions guaranteeing stability nder nominal duty ratio
System operation. A basic first step in this approach, as illustrated

above, is the specification of a Lyapunov function for open-

Asymiptotically, the decay of the Lyapunov function V(x) loop operation. The model (6) is linear and time-invariant
is con:rolled by the eigenvalue of the small signal model oh- in the case of open-loop operation under a constant nominal
tained by linearizing the closed-loop system about z = 0. In duty ratio, i.e. d = 0. Since the open-loop model is known
this example, there is some freedom in placing the eigenvalues a priori to be stable, it is generally possible to deternine

4



a family of suitable quadratic Lyapunov functions. In fact,
in the case where the matrix A is asymptotically stable, it ia
possible to parametrize the family of such quadratic functions
with the Lyavunov equation a.

A'*Q + QIA = -P,* (15) +

where (P,*, A) is an observable pair. The existence of a pos- Vs " .r r z I.
itive definite, symmetric solution Q, to (15) is guaranteed
by the stability of the matrix A and the observability of the
pair {P;, A) [8]. See [23] for a method of selecting a suit-
able matrix Q, for the case where the matrix A has (simple)
eigenvalues on the jw-axis. Figure 5: Up-Down Converter with Additional Filter Sections

Having deternuned the form of a suitable matrix Q1, it is
straigL -forward to specify a globally stabilizing control law for performing the described measurement process, it is possible
the mcdel (6) of the form (11), but based on the Lyapunov to obtain an accurate measurement of the vector Q(Br + b).
function V(x) =f zQi, as follows: Consequently, one can compute the variable y = rQ(Bz + b)

by forming the inner product of z and Q(B: + b). The only
-oyt, -do _ -oy _ 1 - d, parametric dependence is therefore on the nominal state val-

d -do, -oy < -do (16) ues required to determine z, the deviation in the states from
I - d, -oy > I - d their nominal values.

In certain cases, it is possible to further -;inplify the mena-
where V = (Bz + b)'Qx. One particular choice for Q, is Q surement of Q(Bx + b). For these cases, it is possible to
where V(x) = i.r*Qx is the energy in the increment, and it directly measure the vector Q(Bx + b) by measuring certain
turns out that this choice leads to certain nice features, which branch voltages and branch currents in the circuit at one time
are elaborated below. instant. One such example is the up-down converter of Figure

2. For this example, the vector

3.3 Advantages of the Use of the Energy Q(B:+b)= [. 1(18)
in the Increment for Control Purposesm i,

As noted in the previous subsection, there is typically some and these quantities can be directly measured on the con-

freedozi in the choice of the Lyapunov function that can be verter circuit. Necessary and sufficient conditions for such a

used in the control designs described there. Here, we outline simple measurement of the vector Q(Br + b) are given in [23].
three advautages obtained by usilg the energy in the incre- A second potential advantage of the choice Q, = Q in

meut as the Lyapunov function in these control schemes. (16) is that it is possible to use a nearly linear version of

Our advantage of the choice of the energy in the increment this control algorithm by replacing y = (Bx, + b)*Qx in (16)

as the Lyapunov function for control design purposes arises with y1j. = b'Qz, and still maintain global stability. (Of

in the computation of the variable y = (B: + b)'Qx which is course, the saturation constraints are still in effect.) To see

used in these control schemes. In particular. one can always that global stability is maintained, consider the following Lya-

(indirectly) measure the vector Q(Bz + b). To see this, con- punov analysis with V(x) = z*Qr:

sider t e modification of (6) where we multiply this equation d
on the left by the matrix Q, giving -V(z) = + dB)Q + Q(A + dB)]. + (bQx)d. (19)

dt 2
Qz' = QAxr + Q(Bx + b)d. (17) Now the first term on the right-hand side of (19) is always

nonpositive. This follows from the fact that the energy in
Now the vector on the left-hand side of (17) is composed of the the increment takes the form Jz'Qx for any nominal duty
time derivatives of the inductor fluxes and the time deriva- ratio, with the fixed matrix Q. The choice of the control in
tives of the capacitor charges. The elements of this vector (16) (using ylr,) forces the second term on the right-hand side
are necessarily inductor voltages and capacitor currents. The of (19) to be nonpositive. Global stability results from the
vector Q(Bz + b) is the amount by which this vector changes nonpositivity of the right-hand side of (19). Hence, the choice
when the duty ratio steps from -d to I -d, or equivalently, of Q, = Q in (16) permits the use of a feedback control that
the aount this vector changes when the switch configuration requires only the computation of the linear variable yga..
is chan ged. In general, it is possible and feasible to determine A third advantage of the use of the energy in the increment
the vector Q(Bz + b) during each cycle. To do this, for each as a Lyapunov function for control design is that a control law
inductor branch one would measure the voltage across the of the form (16) with Q, = Q can result in global stability of
branch in each of the two switch configurations, and then a more complex power system in which the original converter
form te difference of the two measurements. This difference is embedded. In particular, if the converter is interconnected
constitutes the element of Q(Bz+b) corresponding to the par- only with (relatively) passive circuit elements, the resulting
ticular iaductor port. In the case of a capacitor, one would interconnected system is always guaranteed to e stable. For
meast Le the current flowing into the capacitor in each of the example, if an additional section of output filter is added to
two switch configurations, and form the difference of the two the up-down converter of Example 2, s shown in Figure 5,
measiued curreuts. This difference constitutes the element the control law designed for the origiual converter stabilizes
of Q(B , + b) corresponding to the particular capacitor. By the modified circuit.

5



3.4 Adaptive Control Method to Handle Note that in this model, the quantities without subscripts are

Uncertain deviations from nominal, the quantities with subscript t are
total variables that can be measured, and the quantities with

Nominal State Values subscript n are nominal variables. We only attempt to esti-

This subsection considers a control design of the form (11) for mate the nominal inductor current since the other nominal

the model (6), but in the case where the nominal state vector state variable (the capacitor voltage) is known. The output V

is unknown. The effect of this uncertainty is to replace the of this model can be determined exactly since i - (6i.) is pre-

variable y by cisely i, - In, i.e. the difference between the actual inductor

y = (Bz + b)*Q(z - 6x.) current and the present estimate of the noninal value of this
current. The control design can be completed by specify-

where x.r is the uncertainty in the nominal operating point, ing k > 0 and a feedback gain a. These parameters may
that is be selected by considering the small signal behavior. For

6ra - in - to (20) example, with a nominal load current of 2amps, the eigeu-
where ir. is an estimate of the nominal operating point, values of the small signal linearized model can be placed

To implement the self-tuning scheme, we shall include as at -7.713 ± jl2.9Krad/sec and -1 1.36Krad/sec by select.

part of an augmented state vector, an estimate i.(t) of the ing k = 2778 and the unsaturated gain a = .004. Other
constant nominal value of the state vector for the original parameter choices can result in still faster small signal be-
plant. We can equivalently represent this estimate by its er- havior. A numerical simulation of a start-up transient using
ror, i.e. r.(t) = 1.(t) - z.. The update law for 6z.(t) is these parameters is shown in Figure 6. Note that the initial
selected by considering the Lyapunov function condition for the estimate of the nominal inductor was taken

as zero.

V = 1XQX + .(b.)'K(6z.) (21)

where K is a symmetric positive definite matrix and Q is as 0.

previously specified. In particular, it is possible to stabilize
the system by choosing the update law to be

-(x.) = -K'Q(Br + b) (22) &1 t t

in conjunction with the control law (11). Note that y candnow be determiued without any uncertainty arising from the J.
unknownu uoniua state values since

X - 6Z. = (T, - X.) - X .) = Z,- .',

where x, is the actual full state value (which can be measured) t
while .z' is stored in the controller. Note that it is generally - - t
possible to obtain an accurate measure of Q(Bz + b) as dis-
cussed in Subsection 3.3.

Example: Estimation of Nominal Inductor Current in Figure 6: Start-Up Transient in Second Order Converter Us-

Simple Up-Down Converter In this example, we apply ing Adaptive Control Scheme

the adaptive control scheme to the second order up-down con-
verter whose parameters are given in Section 3.1. We now as-
sume, however, that the load is unknown but constant in the More complex examples that require estimation of more
steady state. As a consequence, the nominal inductor current than one nominal state are considered in 1231.
is also unknown. This is the parameter that our self- tuning
mechanism will estimate. In this example, it is assumed that
the input voltage V. is known (i.e. measured), the nominal
output voltage v. is defined by the regulation problem, and
the nominal duty ratio d. is known. (The nominal duty ratio 4 Summarizing Remarks
can usually be determined from V. and v..) We work with
the augmented model

The Lyapunov-based control described in this paper is evi-
F ] F 0 (1 - d,,)/L 0 i dently a promising approach to the control of switched-modeI , -(I - d.)/C 0 0 v + power converters. The method can be exteuded to convert-

(i)0 0 0 (bi.) ers that handle time-varying input-output waveforms, see the

(V1 ,I icsini 2) In applications in distributed power sup-
d ply environments, this type of control may prove very useful

since it may become necessary to stabilize arbitrary iutercon-
ve) I nections of converters and loads. The method alqo lends itself

S (Vt -vt)i - (Wi.)) + id(v - v,). (23) to the design of state observers as outlined in [231.

6



A Passivity, Incremental Passivity, Relative Passivity Incremental passivity proves to be too
strong a condition in the case of certain nonlinear n-ports. In

and Relative Passivity fact, many nonlinear networks that are not incrementally pas-
sive exhibit a closely related property that we shall term rel-

In order to state the following definitions in a relatively gen- ative passivity. Another closely related notion, local passivity
eral way. we assume the input-output vector pair of an n-port for a capacitor (or inductor) has been introduced in [16, 25j.
to be a hybrid pair. That is, the input u(t) and output y(t) of However, our definition of relative passivity is potentially ap-
an to-pct are n-component vectors whose elements represent plicable to any type of network. To define a relatively passive
port voltages or currents. The components of y(t) are corn- network, we examine the energy in the increment with respect
plemen:ary to those of u(t), and oriented such that u(t)'y(t) to a coustant nominal operating point.
is the instantaneous power entering the network at its ports.
In the following, the networks of interest are assumed to be Definition A.S (Relative Passivity) Given an n-port N
time-invariant unless otherwise noted. with equilibrium state z. and nominal output y correspond-

ing to the constant input u., consider the admissible trjec-

Passiv-ity The definition of passivity presented in Wyatt tO (u(t),y(t)) on [0,71 that is obtained with initial state

et. al. (17], Wyatt [191, and in Hasler and Neiryuck [16] will z(0) = x.. The n-port is relatively passive at z. if
be adopted here.

Definition A.1 (Available Energy) Given an n-port N, W..(T) =--0i(t) - u.]iy(t) - y.] dt _ 0 (26)
let the available energy EA, in state z be the maximum

energy that can be extracted from N when its initial state is for any finite T. The n-port is relatively passive if (26)
z. with the convention that EA.. = +0o if the available energy holds for any nominal operating point. N is strictly rela-
is unbonmnded. That is, tively passive at r, if the inequality in (26) is strict when-

ever z(T) 4 x.. N is strictly relatively passive if it is
EA,, = sUP -- (t)*y(t) dt (24) strictly relatively passive for any conotant nominal state.

Definition A.2 (Passivity) N is passive if EAz is finite In the case of lossless elements for which IV.(T) is a function
for each initial state x. of only z. and z(T), II o.(T) can be useful as a Lyapuuov

function.
Note tLat this definition of passivity is directly tied to a state-

space realization for the n-port in question. This is not ob-
jectionable for our purposes since we aim to draw conclusions References
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